Lifelong exposure and trajectories of the risk factors – a new direction in prediction of CVD risk


Authors: Jaroslav A. Hubáček 1,2
Authors‘ workplace: Centrum experimentální medicíny, IKEM, Praha 1;  III. interní klinika – klinika endokrinologie a metabolismu 1. LF UK a VFN v Praze 2
Published in: AtheroRev 2022; 7(2): 71-75
Category: Reviews

Overview

A single risk factor determination may not lead to a correct classification of an individual’s risk of ACVD. Analyses of risk factor trajectories and effort to express a cumulative exposition, dependent on the duration and intensity of exposure, seem to be the right direction to refine the risk determination. In the case of plasma cholesterol levels, the effect of lifelong exposure on increased risk of ACVD is evident in carriers of cholesterol-raising mutations (familial hypercholesterolemia, primarily mutations within the LDL-receptor gene). In contrast, a lower risk of ACVD has been described in carriers of mutations in PCSK9 (associated with lower cholesterol levels). Differences in risk rates for different lifetime trajectories of lipid levels have also been mentioned. Individually, it is much more severe if the identical final cumulative exposure is reached primarily due to exposure at a younger age (up to 40, max. 45 years of age). This highlights the importance of early detection of at-risk individuals and targeted intervention at younger rather than at older ages.

Keywords:

risk factors – ACVD – life-time exposition


Sources

1. deGoma EM, Knowles JW, Angeli F et al. The evolution and refinement of traditional risk factors for cardiovascular disease. Cardiol Rev 2012; 20(3): 118–129. Dostupné z DOI: <http://dx.doi.org/10.1097/CRD.0b013e318239b924>

2. Schenck-Gustafsson K. Traditional cardiovascular disease risk factors. In ESC: CardioMed (3 ed). Edited by: Camm JA, Lüscher TF, Maurer G et al. Oxford Medicine online: 2018. Dostupné z DOI: <http://dx.doi.org/10.1093/med/9780198784906.001.0001>.

3. Claas SA, Arnett DK. The role of healthy lifestyle in the primordial prevention of cardiovascular disease. Curr Cardiol Rep 2016; 18(6): 56. Dostupné z DOI: <http://dx.doi.org/10.1007/s11886–016–0728–7>.

4. Ockene IS, Chiriboga DE, Stanek EJ et al. Seasonal variation in serum cholesterol levels: treatment implications and possible mechanisms. Arch Intern Med 2004; 164(8): 863–870. Dostupné z DOI: <http://dx.doi.org/10.1001/archinte.164.8.863>.

5. Marti-Soler H, Gubelmann C, Aeschbacher S et al. Seasonality of cardiovascular risk factors: an analysis including over 230 000 participants in 15 countries. Heart 2014; 100(19): 1517–1523. Dostupné z DOI: <http://dx.doi.org/10.1136/heartjnl-2014–305623>.

6. Nordestgaard BG, Chapman MJ, Humphries SE et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 2013; 34(45): 3478–3490a. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/eht273>. Erratum in: Eur Heart J 2020; 41(47): 4517.

7. Kordonouri O, Lange K, Boettcher I et al. New approach for detection of LDL-hypercholesterolemia in the pediatric population: The Fr1dolin-Trial in Lower Saxony, Germany. Atherosclerosis 2019; 280: 85–91. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2018.11.011>.

8. Murín J. Inhibítory proprotein konvertázy subtilizín/keksín typ 9 (PCSK9). AtheroRev 2016; 1(3): 151–154. Dostupné z WWW:<https://www.atheroreview.eu/en/journals/athero-review/2016–3/inhibitory-proprotein-konvertazy-subtilizin-kexin-typ-9-pcsk9–59406>.

9. Vrablík M, Schwarzová L, Freiberger T et al. Familiární hypercholesterolemie: klinické nálezy, molekulární genetika a diferenciální diagnostika. AtheroRev 2016; 1(1): 19–27. Dostupné z WWW: <https://www.prolekare.cz/casopisy/athero-review/2016–1/familiarni-hypercholesterolemie-klinicke-nalezy-molekularni-genetika-a-diferencialni-diagnostika-57619>.

10. Cohen JC, Boerwinkle E, Mosley TH et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354(12): 1264–1272. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa054013>.

11. Zhao Z, Tuakli-Wosornu Y, Lagace TA et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006; 79(3): 514–523. Dostupné z DOI: <http://dx.doi.org/10.1086/507488>.

12. Vrablik M, Dlouha D, Todorovova V et al. Genetics of cardiovascular disease: How far are we from personalized CVD risk prediction and management? Int J Mol Sci 2021; 22(8): 4182. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms22084182>.

13. Hubacek JA. Mendelovské randomizační studie: princip a příklady využití v oblasti kardiovaskulární medicíny. AtheroRev 2020; 5(3): 176–180. Dostupné z WWW: <https://www.prolekare.cz/casopisy/athero-review/2020–3-23/mendelovske-randomizacni-studie-princip-a-priklady-vyuziti-v-oblasti-kardiovaskularni-mediciny-124884/download?hl=cs>.

14. Ference BA, Bhatt DL, Catapano AL et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA 2019; 322(14): 1381–1391. Dostupné z DOI: <https://dx.doi.org/10.1001/jama.2019.14120>.

15. Dayimu A, Wang C, Li J, et al. Trajectories of lipids profile and incident cardiovascular disease risk: A longitudinal cohort study. J Am Heart Assoc 2019; 8(21): e013479. Dostupné z DOI: <https://doi:10.1161/JAHA.119.013479>.

16. Duncan MS, Vasan RS, Vanessa X. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all--cause mortality: Observations from the Framingham Study over 35 years. J Am Heart Assoc. 2019; 8: e011433. Dostupné z DOI: https://doi:10.1161/JAHA.118.011433.

17. Hubacek JA, Nikitin Y, Ragino Y et al. Longitudinal trajectories of blood lipid levels in an ageing population sample of Russian Western-Siberian urban population. PLoS One 2021; 16(12): e0260229. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0260229>.

18. Reinikainen J, Laatikainen T, Karvanen J et al. Lifetime cumulative risk factors predict cardiovascular disease mortality in a 50-year follow-up studying Finland. Int J Epidemiol 2015; 44(1): 108–116. Dostupné z DOI: https://dx.doi.org/10.1093/ije/dyu235>.

19. Wu J, Wang Y, Kang K et al. Association between cumulative exposure to different lipid parameters and risk of newly developed carotid plaque. Stroke Vasc Neurol 2021; 6(3): 359–365. Dostupné z DOI: <http://dx.doi.org/10.1136/svn-2020–000430>.

20. Domanski MJ, Tian X, Wu CO et al. Time course of LDL cholesterol exposure and cardiovascular disease event risk. J Am Coll Cardiol 2020; 76(13): 1507–1516. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2020.07.059>.

21. Shapiro MD, Bhatt DL. "Cholesterol-Years" for ASCVD risk prediction and treatment. J Am Coll Cardiol 2020; 76(13): 1517–1520. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2020.08.004>.

22. Paige E, Barrett J, Pennells L et al. Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: An individual-participant-data meta-analysis. Am J Epidemiol 2017; 186(8): 899–907. Dostupné z DOI: <http://dx.doi.org/10.1093/aje/kwx149>.

23. Staněk V, Gebauerová M, Piťha J et al. The risk profile of patients with acute coronary syndrome treated at IKEM between 2006 and 2013. Cor et Vasa 2017; 59(2): e119–e127. Dostupné z DOI: <http://dx.doi.org/10.1016/j.crvasa.2016.11.013>.

24. Tada H, Okada H, Nohara A et al. Effect of cumulative exposure to low-density lipoprotein-cholesterol on cardiovascular events in patients with familial hypercholesterolemia. Circ J 2021; 85(11): 2073–2078. Dostupné z DOI: http://dx.doi.org/10.1253/circj.CJ-21–0193>.

25. Ding N, Sang Y, Chen J et al. Cigarette smoking, smoking cessation, and long-term risk of 3 major atherosclerotic diseases. J Am Coll Cardiol 2019; 74(4): 498–507. Dostupné z DOI: https://dx.doi.org/10.1016/j.jacc.2019.05.049>.

26. Pool LR, Ning H, Wilkins J et al. Use of long-term cumulative blood pressure in cardiovascular risk prediction models. JAMA Cardiol 2018; 3(11): 1096–1100. Dostupné z DOI: <http://dx.doi.org/10.1001/jamacardio.2018.2763>.

27. Tian X, Wang A, Wu S et al. Cumulative serum uric acid and its time course are associated with risk of myocardial infarction and all-cause mortality. J Am Heart Assoc 2021; 10(13): e020180. Dostupné z DOI: <http://dx.doi.org/10.1161/JAHA.120.020180>.

28. Packard CJ, Weintraub WS, Laufs U. New metrics needed to visualize the long term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vas Pharmacol 2015; 71: 37–39. Dostupné z DOI: http://dx.doi.org/10.1016/j.vph.2015.03.008>.

Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adults
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account