GLP-1 receptor agonists and atherosclerosis


Authors: Branislav Vohnout 1,2,3;  Jana Lisičanová 3
Authors‘ workplace: Ústav výživy, Fakulta ošetrovateľstva a zdravotníckych odborných štúdií a Koordinačné centrum pre familiárne hyperlipoproteinémie, SZU, Bratislava 1;  Ústav epidemiológie LF UK, Bratislava 2;  Diabetologická ambulancia, Diabeda s. r. o., Bratislava 3
Published in: AtheroRev 2022; 7(2): 100-103
Category: Reviews

Overview

Diabetes is one of the main modifiable risk factors of atherosclerotic cardiovascular disease and therefore it is important to consider in diabetes to use treatment with sufficient evidence on cardiovascular risk reduction. Based on its effect on cardiovascular risk GLP-1 RA is such a treatment option. The benefit can be partially explained by its effect on some conventional risk factors, effects on endothelial function, anti-inflammatory and antiatherogenic mechanisms have been also suggested.

Keywords:

diabetes – Atherosclerosis – GLP-1 RA


Sources

1. IDF Diabetes Atlas 2021. 10th edition. Dostupné z WWW: <http://www.diabetesatlas.org>.

2. Sarwar N, Gao P, Seshasai SR et al. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215–2222. Dostupné z DOI: <http://doi: 10.1016/S0140–6736(10)60484–9>.

3. Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255–323. Dostupné z DOI: <http://doi: 10.1093/eurheartj/ehz486>.

4. Ritsinger V, Hero C, Svensson AM et al. Characteristics and prognosis in women and men with type 1 diabetes undergoing coronary angiography: a nationwide registry report. Diabetes Care 2018; 41(4): 876–883. Dostupné z DOI: <http://doi: 10.2337/dc17–2352>.

5. Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Endocrinol 2018; 6(7): 538–546. Dostupné z DOI: <http://doi:10.1016/S2213–8587(18)30079–2>.

6. Sharma D, Verma S, Vaidya S et al. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 2018; 108: 952–962. Dostupné z DOI: <http://doi: 10.1016/j.biopha.2018.08.088>.

7. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696–1705. Dostupné z DOI: <http://doi: 10.1016/S0140–6736(06)69705–5>.

8. Giugliano D, Scappaticcio L, Longo M et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol 2021; 20(1): 189. Dostupné z DOI: <http://doi: 10.1186/s12933–021–01366–8>.

9. Berndt J, Ooi SL, Pak SC. What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists? – A Mini Review. Molecules 2021; 26: 4822. Dostupné z DOI: <https://doi.org/10.3390/molecules26164822>.

10. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369(2): 145–154. Dostupné z DOI: <https://doi.org/10.1056/NEJMoa1212914>.

11. Gregg EW, Jakicic JM, Blackburn G et al. Look AHEAD Research Group. Association of the magnitude of weight loss and changes in physical fitness with longterm cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2016; 4(11): 913–921. Dostupné z DOI: <https://doi.org/10.1016/S2213–587(16)30162–0>.

12. Sposito AC, Berwanger O, de Carvalho LSF et al. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17(1): 157. Dostupné z DOI: <https://doi: 10.1186/s12933–018–0800–2>.

13. Marso SP, Bain C, Consoli, A et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834–1844. Dostupné z DOI: <https://doi: 10.1056/NEJMoa1607141>.

14. Sun F, Wu S, Wang J et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis. Clin Ther 2015; 37(1): 225–241. Dostupné z DOI: <https://doi:10.1016/j.clinthera.2014.11.008>.

15. Heuvelman V, Raalte D, Smits MM. Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res 2020; 116(5): 916–930. Dostupné z DOI: <https://doi:10.1093/cvr/cvz323>.

16. Vergès B, Duvillard L, Pais de Barros JP et al. Liraglutide reduces postprandial hyperlipidemia by increasing ApoB48 (Apolipoprotein B48) catabolism and by reducing ApoB48 production in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2018; 38(9): 2198–2206. Dostupné z DOI: <https://doi:10.1161/ATVBAHA.118.310990>.

17. Vergès B, Duvillard L, Pais de Barros JP et al. Liraglutide increases the catabolism of apolipoprotein B100-containing lipoproteins in patients with type 2 diabetes and reduces proprotein convertase subtilisin/kexin type 9 expression. Diabetes Care 2021; 44(4): 1027–1037. Dostupné z DOI: <https://doi: 10.2337/dc20–1843>.

18. Hjerpsted JB, Flint A, Brooks A et al. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab 2018; 20(3): 610–619. Dostupné z DOI: <https://doi.org/10.1111/dom.13120>.

19. Novodvorský P, Haluzík M. The Effect of GLP‑1 Receptor Agonists on Postprandial Lipaemia. Curr Atheroscler Rep 2022; 24: 13–21. Dostupné z DOI: <https://doi.org/10.1007/s11883–022–00982–3>.

20. Liu L, Liu J, Huang Y. Protective Effects of Glucagon-like Peptide 1 on Endothelial Function in Hypertension. J. Cardiovasc. Pharmacol 2015; 65: 399–405. Dostupné z DOI: <https://doi.org/ 10.1097/FJC.0000000000000176>.

21. Chang W, Zhu F, Zheng H et al. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: An implication in the treatment of atherosclerosis. Mol Immunol 2019; 116: 73–79. Dostupné z DOI: <https://doi.org/10.1016/j.molimm.2019.09.021>.

22. Yue W, Li Y, Ou D et al. The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life 2019; 71(9): 1347–1354. Dostupné z DOI: <https://doi.org/10.1002/iub.2046>.

23. Gaspari T, Liu H, Welungoda I et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE -/- mouse model. Diabetes Vasc Dis Res 2011; 8(2): 117–124. Dostupné z DOI: <https://doi.org/10.1177/1479164111404257>.

24. Del Olmo-Garcia MI, Merino-Torres JF. GLP-1 Receptor Agonists and Cardiovascular Disease in Patients with Type 2 Diabetes. J Diabetes Res 2018; 2018: 4020492. Dostupné z DOI: <https://doi: 10.1155/2018/4020492>.

25. Drucker DJ. The Ascending GLP-1 Road From Clinical Safety to Reduction of Cardiovascular Complications. Diabetes 2018; 67(9): 1710–1719. Dostupné z DOI: <https://doi: 10.2337/dbi18–0008>.

26. Liu Z, Zhang M, Zhou T et al. Exendin-4 promotes the vascular smooth muscle cell re-differentiation through AMPK/SIRT1/FOXO3a signaling pathways. Atherosclerosis 2018; 276: 58–66. Dostupné z DOI: <https://doi: 10.1016/j.atherosclerosis.2018.07.016>.

27. Jojima T, Uchida K, Akimoto K et al. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis 2017; 261: 44–51. Dostupné z DOI: <https://doi:10.1016/j.atherosclerosis.2017.04.001>.

28. Vohnout B, de Gaetano G, Donati MB et al. The Relationship between Dyslipidemia and Inflammation. In: M. Mancini, J. Ordovas, G. Riccardi et al (eds). Nutritional and Metabolic Bases of Cardiovascular Disease. Blackwell Publishing 2011: 202–210. ASIN: B005D7EPG0.

29. Rakipovski G, Rolin B, Nohr J et al. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE-/- and LDLr-/- Mice by a Mechanism That Includes Inflammatory PathwaysJ Am Coll Cardiol Basic Trans Science 2018; 3(6): 844–857. Dostupné z DOI: <https://doi: 10.1016/j.jacbts.2018.09.004>.

30. Saraiva JF, Franco D. Oral GLP-1 analogue: perspectives and impact on atherosclerosis in type 2 diabetic patiensts. Cardiovasc Diab 2021; 20: 235. Dostupné z DOI: <https://doi: 10.1186/s12933–021–01417–0>.

31. Nauck MA, Meier JJ, Cavender MA et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl eptidase- 4 inhibitors. Circulation 2017; 136(9): 849–870. Dostupné z DOI: <https://doi: 10.1161/CIRCULATIONAHA.117.028136>.

Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adults
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account