Atherogenic dyslipidemia – a new target in cardiovascular prevention

Authors: Ľubomíra Fábryová
Authors‘ workplace: Metabol KLINIK s. r. o., Ambulancia pre diabetológiu, poruchy látkovej premeny a výživy, Bratislava
Published in: AtheroRev 2016; 1(3): 126-137
Category: Reviews


Despite the huge success achieved through statin therapy in reducing LDL-C (primary endpoint) together with the reduction of cardio-cerebrovascular morbidity and mortality still remains high cardiovascular risk. This reflects the rise in obesity, increased metabolic syndrome and type 2 diabetes, which is characterized by high prevalence of atherogenic dyslipidemia. Atherogenic dyslipidemia is characterized by a cluster of quantitative and qualitative changes in the meta­bolism of lipids and lipoproteins, leading to increased aterogenicity of plasma: increased concentration of the triglycerides and apo C-III-rich VLDL particles, the quality modified small dense LDL particles, quantitative and qualitative changes in HDL-C particles with loss of cardioprotectivity, increased concentration of remnant lipoprotein particles and the presence of postprandial hyperlipidemia. Targeting the atherogenic dyslipidemia complex is a next extension of the therapeutic targets. From the existing lipid-lowering agents, we should review the effect of fibrates in combination therapy in patients with atherogenic dyslipidemia. Near future are selective PPARα modulators, a little further ahead is therapy directly targeting the metabolism of triglyceride-rich lipoproteins. These options represent a new opportunity to reduce cardiovascular risk by influencing the complex atherogenic dyslipidemia (fig, tab. 3) [68].

Key words:
atherogenic dyslipidaemia – residual cardiovascular risk – indicators of plasma atherogenicity – statins – fibrates – selective PPARα modulators – CETP inhibitors – niacin – PCSK9 inhibitors – omega 3 fatty acids – apo C-III inhibitors


1. Catapano AL, Reiner Z, De Backer G et al. ESC/EAS Guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 2011; 217(1): 3–46.

2. Stone NJ, Robinson JG, Lichtenstein AH et al. [American College of Cardiology/American Heart Association Task Force on Practice Guidelines]. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63(25 Pt B): 2889–2934. Dostupné z DOI: <>.

3. Piepoli MF, Hoes AW, Agewall S et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016; 37(29): 2315–2381. Dostupné z DOI: <>.

4. Mihaylova B, Emberson J, Blackwell L et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380(9841): 581–590.

5. Ridker PM. LDL cholesterol: controversies and future therapeutic directions. Lancet 2014; 384(9943): 607–617. <–6736(14)61009–6>.

6. Fruchart JC, Davignon J, Hermans MP et al. [Residual Risk Reduction Initiative (R3i)]. Residual macrovascular risk in 2013: what have we learned? Cardiovascular Diabetology 2014; 13: 26. Dostupné z DOI: <–2840–13–26>.

7. Catapano AL, Farnier M, Foody JM et al. Combination therapy in dyslipidemia: where are we now? Atherosclerosis 2014; 237(1): 319–35. Dostupné z DOI: <http://dx.doi.org710.1016/j.atherosclerosis.2014.09.026>.

8. Lloyd-Jones DM, Morris PB, Ballantyne CM et al. 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2016; 68(1): 92–125. Dostupné z DOI: <>.

9. Cannon CP, Blazing MA, Giugliano RP et al. Ezetimibe added to statin therapy after Acute Coronary Syndromes. N Engl J Med 2015; 372(25): 2387–2397. Dostupné z DOI: <>.

10. Sabatine MS, Giugliano RP, Wiviott SD et al. [Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators]. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1500–1509. Dostupné z DOI: <>.

11. Robinson JG, Farnier M, Krempf M et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1489–1499. Dostupné z DOI: <>.

12. Fábryová Ľ. Diabetes a obezita. Editoriál. Forum Diab 2016; 5(1): 5–6.

13. Chapman MJ, Ginsberg HN, Amarenco P et al. [European Atherosclerosis Society Consensus Panel]. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: eveidence and guidance for management. Eur Heart J 2011; 32(11): 1345–1361. Dostupné z DOI: <>.

14. Halcox JP, Roy C, Henriksson KM. Assessing the Prevalence of Atherogenic Dyslipidemia in EURIKA Patients. Circulation 2015; 132(Suppl 3): A17096. Dostupné z DOI: <>.

15. Mokáň M, Galajda P, Prídavková D et al. Prevalencia diabetes mellitus a metabolického syndrómu na Slovensku. Diabetes a obezita 2007; 12: 2–10.

16. Fábryová Ľ. Rizikové faktory aterosklerózy v populácii novodiagnostikovaných diabetikov 2. typu. Dizertačná práca. Bratislava: 2007.

17. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013; 5(4): 1218–1240. Dostupné z DOI: <>.

18. Nordestgaard BG, Benn M, Schnohr P et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298(3): 299–308.

19. Freiberg JJ, Tybjærg-Hansen A, Jensen JS et al. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 2008; 300(18): 2142–2152.

20. Di Angelantonio E, Sarwar N, Perry P et al. [Emerging Risk Factors Collaboration]. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302(18): 1993–2000.

21. Miller M, Cannon CP, Murphy SA et al. [PROVE IT-TIMI 22 Investigators]. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2008; 51(7): 724–730. Dostupné z DOI: <>.

22. Faergeman O, Holme I, Fayyad R et al. [Steering Committees of IDEAL and TNT Trials]. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol 2009; 104(4): 459–463. Dostupné z DOI: <>.

23. Assmann G, Cullen P, Schulte H. Non-LDL-related dyslipidaemia and coronary risk: a case-control study. Diab Vasc Dis Res 2010; 7(3): 204–212. Dostupné z DOI: <>.

24. Carey VJ, Bishop L, Laranjo N et al. Contribution of high plasma triglycerides and low high-density lipoprotein cholesterol to residual risk of coronary heart disease after establishment of low-density lipoprotein cholesterol control. Am J Cardiol 2010; 106(6): 757–763. Dostupné z DOI: <>.

25. Fruchart J Ch, Davignon J, Hermans MP et al. Residual macrovascular risk in 2013: what have we learned? Cardiovasc Diabetol 2014; 13: 26. Dostupné z DOI: <–2840–13–26>.

26. Varbo A, Benn M, Tybjærg-Hansen A et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013; 61(4): 427–436. Dostupné z DOI: <>.

27. Nordestgaard B, Varbo A. Lipids and cardiovascular disease 3: Triglycerides and cardiovascular disease. Lancet 2014; 384(9943): 626–635. Dostupné z DOI: <–6736(14)61177–6>.

28. Rader DJ, Hovingh GK. Lipids and cardiovascular disease 2: HDL and cardiovascular disease. Lancet 2014; 384(9943): 618–625. Dostupné z DOI: <–6736(14)61217–4>.

29. Rosenson RS, Davidson MH, Hirsh BJ et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol 2014; 64(23): 2525–2540. Dostupné z DOI: <>.

30. Xiao Ch, Dash S, Morgantini C et al. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol. Diabetes 2016; 65(7): 1767–1778. Dostupné z DOI: <–0046>.

31. Austin MA, Breslow JL, Hennekens Ch et al. Low-density lipoprotein subclass patterns and the risk of myocardial infarction. JAMA 1988; 260(13): 1917–1921.

32. Miller M. The epidemiology of triglyceride as coronary artery disease risk factor. Clin Cardiol 1999; 22(6 Suppl): I1-I6.

33. Stavenow L, Kjellström T. Influence of serum triglyceride levels on the risk for myocardial infarction in 12510 middle aged males: interaction with serum cholesterol. Atherosclerosis 1999; 147(2): 243–247.

34. Bosomworth NJ. Approach to identifying and managing atherogenic dyslipidemia A metabolic consequence of obesity and diabetes. Canad Fam Physician 2013; 59(11): 1169–1180.

35. Dobiášová M. Atherogenic index of plasma: log(triglycerides/HDL-cholesterol). Theoretical and practical implications. Clin Chem 2004; 50(7): 1113–1115.

36. Dukát A, Fábryová Ľ, Oravec S et al. Lipidy a veľkosť lipoproteínových častíc u pacientov s novozisteným a doposiaľ neliečeným diabetes mellitus 2. typu. Vnitř Lék 2013; 59(6): 450–452.

37. Chapman MJ, Blankenberg S, Landmesser U. The year in cardiology 2015: prevention. Eur Heart J 2016 Feb; 37(6):510–519. Dostupné z DOI: <>.

38. Wang D, Liu B, Tao W et al. Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev 2015; 25(10): CD009580. Dostupné z DOI: <>.

39. Elam MB, Lovato LC, Ginsberg HN. The Effect of Combined Statin/Fibrate Therapy on Cardiovascular Disease is Influenced by Sex and Dyslipidemia: ACCORDION-Lipid Long-Term Follow-up. Circulation 2015; 132(Suppl 3): A15997. Dostupné z WWW: <>.

40. Min J, Celine F, Jicheng LV et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010; 375(9729): 1875–1884. Dostupné z DOI: <–6736(10)60656–3>.

41. Sacks FM, Hermans MP, Fioretto P et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation 2014; 129(9): 999–1008. Dostupné z DOI: <>.

42. Hermans MP, Fruchart JC, Davignon J et al. Residual Microvascular Risk in Type 2 Diabetes in 2014: Is it Time for a Re- Think? A Perspective from the Residual Risk Reduction Initiative (R3i). J Diabetes Metab 2015; 5:413. Dostupné z DOI: <–6156.1000413>.

43. Fruchart JC. Selective peroxisome proliferator-activated receptorα modulators (SPPARMα): The next generation of peroxisome proliferator-activated receptor α-agonists. Cardiovasc Diabetol 2013; 12: 82. Dostupné z DOI: <–2840–12–82>.

44. Taylor AJ, Villines TC, Stanek EJ et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med 2009; 361(22): 2113–2122. Dostupné z DOI: <>.

45. Boden WE, Probstfield JL, Anderson T et al. [AIM-HIGH Investigators]. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011; 365(24): 2255–2267. Dostupné z DOI: <>.

46. Landray MJ, Haynes R, Hopewell JC et al. [HPS2-THRIVE Collaborative Group]. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med 2014; 371(3): 203–212. Dostupné z DOI: <>.

47. Barter PJ, Caulfield M, Eriksson M et al. [ILLUMINATE Investigators]. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357(21): 2109–2122.

48. Schwartz GG, Olsson AG, Abt M et al. [dal-OUTCOMES Investigators]. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367(22): 2089–2099. Dostupné z DOI: <>.

49. Nicholls SJ, Lincoff A, Barter P et al. [Late-Breaking Clinical Trials II.] The ACCELERATE trial: impact of the cholesteryl ester transfer protein inhibitor evacetrapib on cardiovascular outcome. Presented at the 65th Annual Scientific Session and Expo of the American College of Cardiology. April 2–4, 2016; Chicago (IL).

50. Brinton EA, Kher U, Shah S et al. [DEFINE Investigators]. Effects of anacetrapib on plasma lipids in specific patient subgroups in the DEFINE (Determining the Efficacy and Tolerability of CETP INhibition with AnacEtrapib) trial. J Clin Lipidol 2015; 9(1): 65–71. Dostupné z DOI: <>.

51. Robinson JG, Farnier M, Krempf M et al. [ODYSSEY LONGTERM Investigators]. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1489–1499. Dostupné z DOI: <>.

52. Sabatine MS, Giugliano RP, Wiviott SD et al. [Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators]. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1500–1509. Dostupné z DOI: <>.

53. Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER). Identifier: NCT01764633. Dostupné z WWW: <>.

54. ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab SAR236553 (REGN727). Identifier: NCT01663402. Dostupné z WWW: <>.

55. SPIRE-1: The Evaluation of Bococizumab (PF-04950615;RN316) in Reducing the Occurrence of Major Cardiovascular Events in High Risk Subjects. Identifier: NCT01975376. Dostupné z WWW: <>.

56. SPIRE-2: The Evaluation of Bococizumab (PF-04950615; RN316) in Reducing the Occurrence of Major Cardiovascular Events in High Risk Subjects. Clinical- Identifier: NCT01975389. Dostupné z WWW: <>.

57. Fábryová Ľ. Monoklonálne protilátky proti PCSK9 – nova nádej pre pacientov s vysokým kardiovaskulárnym rizikom. Interná Med 2014; 14(10): 408–416.

58. Druce I, Abujrad H, Ooi T Ch. PCSK9 and triglyceride-rich lipoprotein metabolism. J Biomed Res 2015; 29(6): 429–436. Dostupné z DOI: <>.

59. Crosby J, Peloso GM, Auer PL et al. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-off function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014; 371(1): 22–31. Dostupné z DOI: <>.

60. Gaudet D, Alexander VJ, Baker BF et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015; 373(5): 438–447. Dostupné z DOI: <>.

61. Wang Y, Gusarova V, Banfi S et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res 2015; 56(7): 1296–1307. Dostupné z DOI: <>.

62. Dijk W, Kersten S. Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol Metab 2014; 25(3): 146–155. Dostupné z DOI: <>.

63. Cuchel M, Meagher EA, du Toit Theron H et al. Phase 3 HoFH Lomitapide Study investigators. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 2013; 381(9860): 40–46. Dostupné z DOI: <–6736(12)61731–0>.

64. Santos RD, Duell PB, East C et al. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J 2015; 36(9): 566–575. Dostupné z DOI: <>.

65. Meyers CD, Amer A, Majumdar T et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of pradigastat, a novel diacylglycerol acyltransferase 1 inhibitor in overweight or obese, but otherwise healthy human subjects. J Clin Pharmacol 2015; 55(9): 1031–1041. Dostupné z DOI: <>.

66. Griffith DA, Kung DW, Esler WP et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J Med Chem 2014; 57(24): 10512–10526. Dostupné z DOI: <>.

67. Pinkosky SL, Filippov S, Srivastava RA et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013; 54(1): 134–151. Dostupné z DOI: <>.

68. Fábryová Ľ. Antiaterogénny efekt inkretínov: fakt alebo fikcia? Interná Med 2014; 14(2): 77–82.

Angiology Diabetology Internal medicine Cardiology General practitioner for adults
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account