New hypolipidemic agents in the treatment of diabetic dyslipidemia

Authors: Vladimír Bláha ;  Jakub Víšek
Authors‘ workplace: III. interní gerontometabolická klinika, LF UK a FN Hradec Králové
Published in: AtheroRev 2019; 4(2): 75-81
Category: Reviews


Dyslipidemias represent a variety of quantitative and/or qualitative lipoprotein abnormalities. According to etiology, we distinguish primary dyslipidemias with strictly genetic background and secondary ones with their origin in other disease or pathological states. Diabetic dyslipidemia is a type of secondary dyslipidemia and plays an important role in determining the cardiovascular risk of subjects with type 2 diabetes. In these patients, insulin resistance is responsible for overproduction and secretion of atherogenic very low density lipoprotein. In addition, insulin resistance promotes the production of small dense low-density lipoprotein (LDL) and reduces high-density lipoprotein (HDL) production. Cardiovascular disease remains a leading cause of morbidity and mortality in diabetic patients. Previous results support the role for small, dense LDL particles in the etiology of atherosclerosis and their association with coronary artery disease. Moreover, lowering LDL-C reduces the risk of cardiovascular death. Therefore, the European guidelines for the management of dyslipidemias recommend an LDL-C goal < 2.6 mmol/l in diabetic subjects without cardiovascular events. Moreover, if triacylgly­cerols (TAG) are elevated, they recommend a non-HDL-C goal < 3.4 mmol/l in diabetic individuals without cardiovascular events. Statins are the first line of LDL-lowering therapy in diabetic patients and combined therapy with ezetimibe and statins could be useful in very high cardiovascular risk diabetic subjects. Furthermore, the effect of a fibrate as an add-on treatment to a statin could improve the lipid profile in diabetic individuals with high TAG and low HDL-C. Regarding new the­rapies, recent data from phase III trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors con­siderably decrease LDL-C. Thus, they may be useful in diabetic patients with concomitant diseases such as familial dyslipid­emia, recurrent cardiovascular events, and elevated LDL-C after second drug administration in addition to maximal statin dose or statin intolerance.


atherosclerosis – cardiovascular disease – cardiovascular risk – diabetes mellitus – hypercholesterolemia – LDL-cholesterol

  1. Anderson KM, Castelli WP, Levy D. Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA 1987; 257(16): 2176–2180.
  2. Fredrickson DS. An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med 75(3): 471–472.
  3. Tomkin G, Owens D. Diabetes and dyslipidemia: characterizing lipoprotein metabolism. Diabetes Metab Syndr Obes Targets Ther 2017; 10: 333–343. Dostupné z DOI: <>.
  4. Haffner SM, Lehto S, Rönnemaa T et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339(4): 229–234. Dostupné z DOI: <>.
  5. Kelley DE, McKolanis TM, Hegazi RAF et al. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 2003; 285(4): 906–916. Dostupné z DOI: <>.
  6. Verges B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 2010; 211(2): 353–360. Dostupné z DOI: <>.
  7. Calanna S, Scicali R, Di Pino A et al. Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Nutr Metab Cardiovasc Dis 2014; 24(6): 670–676. Dostupné z DOI: <>.
  8. Yusuf S, Hawken S, Ôunpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 2004; 364(9438): 937–952. Dostupné z DOI: <–6736(04)17018–9>.
  9. Ference BA, Ginsberg HN, Graham I et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38(32): 2459–2472. Dostupné z DOI: <>.
  10. Vakkilainen J, Steiner G, Ansquer J-C et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the diabetes atherosclerosis intervention study (DAIS). Circulation 2003; 107(13): 1733–1737. Dostupné z DOI: <,
  11. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276(11): 875–881.
  12. Kearney PM, Blackwell L, Collins R et al. [Cholesterol Treatment Trialists' (CTT) Collaborators]. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371(9607): 117–125. Dostupné z DOI: <–6736(08)60104-X>.
  13. Vrablík, M., Piťha, J., Bláha, V et al. Stanovisko výboru České společnosti pro aterosklerózu k doporučením ESC/EAS pro diagnostiku a léčbu dyslipidemií z roku 2016. Vnitřní lékařství 2018; 64(1): 9–16.
  14. Handelsman Y1, Lepor NE. PCSK9 Inhibitors in Lipid Management of Patients with Diabetes Mellitus and High Cardiovascular Risk: A Review. J Am Heart Assoc 2018; 7(13). pii: e008953. Dostupné z DOI: <>.
  15. Santos RD, Waters DD, Tarasenko L et al. A comparison of non-HDL and LDL cholesterol goal attainment in a large, multinational patient population: The Lipid Treatment Assessment Project 2. Atherosclerosis 2012; 224(1): 150–153. Dostupné z DOI: <>.
  16. Abifadel M, Varret M, Rabes J-P et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34(2): 154–156. Dostupné z DOI: <>.
  17. Austin MA, Hutter CM, Zimmern RL et al Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 2004; 160(5): 407–420. Dostupné z DOI: <>.
  18. Yue P, Averna M, Lin X et al. The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 2006; 27(5): 460–466. Dostupné z DOI: <>.
  19. Cainzos-Achirica M, Martin SS, Cornell JE et al. PCSK9 inhibitors: a new era in lipid-lowering treatment? Ann Intern Med 2015; 163(1): 64–65. Dostupné z DOI: <–0920>.
  20. Zhang X-L, Zhu Q-Q, Zhu L et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med 2015; 13: 123. Dostupné z DOI: <–015–0358–8>.
  21. Robinson JG, Farnier M, Krempf M et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1489–1499. Dostupné z DOI: <>.
  22. Cannon CP, Cariou B, Blom D et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J 2015; 36(19): 1186–1194. Dostupné z DOI: <>.
  23. Moriarty PM, Thompson PD, Cannon CP et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015; 9(6):758–769. Dostupné z DOI: <>.
  24. Scicali R, Di Pino A, Ferrari V et al. New treatment options for lipid lowering therapy in subjects with type 2 diabetes. Acta Diabetol 2018; 55(3): 209–218. Dostupné z DOI: <–017–1089–4>.
  25. Leiter LA, Cariou B, Muller-Wieland D et al. Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: the ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab 2017; 19(12): 1781–1792. Dostupné z DOI: <>.
  26. Ray KK, Leiter LA, Muller-Wieland D et al. Alirocumab vs usual lipid-lowering care as add-on to statin therapy in individuals with type 2 diabetes and mixed dyslipidaemia: the ODYSSEY DMDYSLIPIDEMIA randomized trial. Diabetes Obes Metab 2018; 20(6): 1479–1489. Dostupné z DOI: <>.
  27. Schwartz, GG, Steg, PG, Hanotin, C et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018; 379(22): 2097–2107. Dostupné z DOI: <>.
  28. Landmesser U, Chapman MJ, Stock JK et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J 2018; 39(14): 1131–1143. Dostupné z DOI: <>.
  29. Ray KK, Colhoun H, Szarek M et al. [ODYSSEY OUTCOMES Investigators]. Alirocumab and Cardiovascular Outcomes in Patients with Acute Coronary Syndrome (ACS) and Diabetes—Prespecified Analyses of ODYSSEY OUTCOMES. Diabetes 2018; 67(Supplement 1). Dostupné z DOI: <–6-LB>.
  30. Sabatine MS, Giugliano RP, Wiviott SD et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372: 1500–1509. Dostupné z DOI: <>.
  31. Nissen SE, Stroes E, Dent-Acosta RE et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with musile-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 2016; 315(15): 1580–1590. Dostupné z DOI: <>.
  32. Nicholls SJ, Puri R, Anderson T et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 2016; 316(22): 2373–2384. Dostupné z DOI: <>.
  33. Sattar N, Preiss D, Robinson JG et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patiens with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol 2016; 4(5): 403–410. Dostupné z DOI: <–8587(16)00003–6>.
  34. Sabatine MS, Leiter LA, Wiviott SD et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5(12): 941–950. Dostupné z DOI: <–8587(17)30313–3>.
  35. Coutinho M, Gerstein HC, Wang Y et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999; 22(2): 233–240
  36. Masana L, Pedro-Botet J, Civeira F. IMPROVE-IT clinical implications. Should the “high-intensity cholesterol-lowering therapy” strategy replace the “high-intensity statin therapy”? Atherosclerosis 2015; 240(1): 161–162. Dostupné z DOI: <>.
  37. Santos RD. PCSK9 inhibition in type 2 diabetes: so far so good, but not there yet. Lancet Diabetes Endocrinol 2016; 4(5): 377–379. Dostupné z DOI: <–8587(16)00014–0>.
Angiology Diabetology Internal medicine Cardiology General practitioner for adults
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account